Fast Detection of Community Structures using Graph Traversal in Social Networks
نویسندگان
چکیده
Finding community structures in social networks is considered to be a challenging task as many of the proposed algorithms are computationally expensive and does not scale too well for large graphs. Most of the community detection algorithms proposed till date are unsuitable for applications that would require detection of communities in real-time, especially for massive networks. The Louvain method, which uses modularity maximization to detect clusters, is usually considered to be one of the fastest running community detection algorithms even without any provable bound. We propose a novel graph traversal-based community detection framework, which not only runs faster than the Louvain method but also generates clusters of better quality for most of the benchmark datasets. We show that our algorithms run in time O(|V | + |E|) to create an initial cover before using modularity maximization to get the final cover. Keywords— Community Detection, Influenced Neighbor Score, Brokers, Community Nodes, Communities
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملAn Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.04459 شماره
صفحات -
تاریخ انتشار 2017